Are used to show the relationship between two factors that led

are used to show the relationship between two factors that led

A linear graph has an equation that looks like y=mx.. Boyle's Law: PV = C (where C is a constant much like m is constant in the equation above). If you want to. Correlation is a statistical technique that can show whether and how strongly pairs of People of the same height vary in weight, and you can easily think of two to look at the relationship between two variables while removing the effect of one or two Most statisticians say you cannot use correlations with rating scales. A scatter plot (also known as a scatter diagram) shows the relationship between two quantitative (numerical) variables. These variables may be positively related .

Correlation can tell you just how much of the variation in peoples' weights is related to their heights. Although this correlation is fairly obvious your data may contain unsuspected correlations. You may also suspect there are correlations, but don't know which are the strongest.

are used to show the relationship between two factors that led

An intelligent correlation analysis can lead to a greater understanding of your data. Techniques in Determining Correlation There are several different correlation techniques. The Survey System's optional Statistics Module includes the most common type, called the Pearson or product-moment correlation. The module also includes a variation on this type called partial correlation. The latter is useful when you want to look at the relationship between two variables while removing the effect of one or two other variables.

Like all statistical techniques, correlation is only appropriate for certain kinds of data. Correlation works for quantifiable data in which numbers are meaningful, usually quantities of some sort. It cannot be used for purely categorical data, such as gender, brands purchased, or favorite color. Rating Scales Rating scales are a controversial middle case. The numbers in rating scales have meaning, but that meaning isn't very precise.

They are not like quantities. With a quantity such as dollarsthe difference between 1 and 2 is exactly the same as between 2 and 3.

With a rating scale, that isn't really the case. You can be sure that your respondents think a rating of 2 is between a rating of 1 and a rating of 3, but you cannot be sure they think it is exactly halfway between. This is especially true if you labeled the mid-points of your scale you cannot assume "good" is exactly half way between "excellent" and "fair". Most statisticians say you cannot use correlations with rating scales, because the mathematics of the technique assume the differences between numbers are exactly equal.

Nevertheless, many survey researchers do use correlations with rating scales, because the results usually reflect the real world. Our own position is that you can use correlations with rating scales, but you should do so with care. When working with quantities, correlations provide precise measurements.

When working with rating scales, correlations provide general indications. Correlation Coefficient The main result of a correlation is called the correlation coefficient or "r".

Scatter Plot: Is there a relationship between two variables?

Could you, for example, show a graphical relationship between good looks and high intelligence? I don't think so. First of all, you would have a tough time quantifying good looks though some social science researchers have tried! Intelligence is even harder to quantify, especially given the possible cultural bias to most of our exams and tests. Finally, I doubt if you could ever find a connection between the two variables; there may not be any.

Correlation

Choose variables that are quantifiable. Height and weight, caloric intake and weight, weight and blood pressure, are excellent personal examples. The supply and demand for oil in Canada, the Canadian interest rate and planned aggregate expenditure, and the Canadian inflation rate during the past forty years are all quantifiable economic variables.

You also need to understand how to plot sets of coordinate points on the plane of the graph in order to show relationships between two variables.

One set of coordinates specify a point on the plane of a graph which is the space above the x-axis, and to the right of the y-axis. For example, when we put together the x and y axes with a common origin, we have a series of x,y values for any set of data which can be plotted by a line which connects the coordinate points all the x,y points on the plane.

Such a point can be expressed inside brackets with x first and y second, or 10,1. A set of such paired observation points on a line or curve which slopes from the lower left of the plane to the upper right would be a positive, direct relationship.

A set of paired observation or coordinate points on a line that slopes from the upper left of the plane to the lower right is a negative or indirect relationship. Working from a Table to a Graph Figures 5 and 6 present us with a table, or a list of related numbers, for two variables, the price of a T-shirt, and the quantity purchased per week in a store.

Note the series of paired observation points I through N, which specify the quantity demanded x-axis, reflecting the second column of data in relation to the price y-axis, reflecting first column of data. See that by plotting each of the paired observation points I through N, and then connecting them with a line or curve, we have a downward sloping line from upper left of the plane to the lower right, a negative or inverse relationship.

We have now illustrated that as price declines, the number of T-shirts demanded or sought increases.

What is used to show the relationship between two factors

Or, we could say reading from the bottom, as the price of T-shirts increases, the quantity demanded decreases. We have stated here, and illustrated graphically, the Law of Demand in economics. Now we can turn to the Law of Supply. The positive relationship of supply is aptly illustrated in the table and graph of Figure 7.

Note from the first two columns of the table that as the price of shoes increases, shoe producers are prepared to provide more and more goods to this market. The converse also applies, as the price that consumers are willing to pay for a pair of shoes declines, the less interested are shoe producers in providing shoes to this market. The x,y points are specified as A through to E.

When the five points are transferred to the graph, we have a curve that slopes from the lower left of the plane to the upper right. We have illustrated that supply involves a positive relationship between price and quantity supplied, and we have elaborated the Law of Supply.

Now, you should have a good grasp of the fundamental graphing operations necessary to understand the basics of microeconomics, and certain topics in macroeconomics. Many other macroeconomics variables can be expressed in graph form such as the price level and real GDP demanded, average wage rates and real GDP, inflation rates and real GDP, and the price of oil and the demand for, or supply of, the product.

Don't worry if at first you don't understand a graph when you look at it in your text; some involve more complicated relationships. You will understand a relationship more fully when you study the tabular data that often accompanies the graph as shown in Figures 5 and 7or the material in which the author elaborates on the variables and relationships being studied. Gentle Slopes When you have been out running or jogging, have you ever tried, at your starting pace, to run up a steep hill? If so, you will have a good intuitive grasp of the meaning of a slope of a line.

You probably noticed your lungs starting to work much harder to provide you with extra oxygen for the blood. If you stopped to take your pulse, you would have found that your heart is pumping blood far faster through the body, probably at least twice as fast as your regular, resting rate. The greater the steepness of the slope, the greater the sensitivity and reaction of your body's heart and lungs to the extra work.

Slope has a lot to do with the sensitivity of variables to each other, since slope measures the response of one variable when there is a change in the other. The slope of a line is measured by units of rise on the vertical y-axis over units of run on the horizontal x-axis. A typical slope calculation is needed if you want to measure the reaction of consumers or producers to a change in the price of a product.

For example, let's look at what happens in Figure 7 when we move from points E to D, and then from points B to A. The run or horizontal movement is 80, calculated from the difference between and 80, which is Let's look at the change between B and A.

The vertical difference is again 20 - 80while the horizontal difference is 80 - We can generalize to say that where the curve is a straight line, the slope will be a constant at all points on the curve. Figure 8 shows that where right-angled triangles are drawn to the curve, the slopes are all constant, and positive.

Now, let's take a look at Figure 9, which shows the curve of a negative relationship.

are used to show the relationship between two factors that led

All slopes in a negative relationship have a negative value. We can generalize to say that for negative relationships, increases in one variable are associated with decreases in the other, and slope calculations will, therefore, be of a negative value. A final word on non-linear slopes. Not all positive nor negative curves are straight lines, and some curves are parabolic, that is, they take the shape of a U or an inverted U, as is demonstrated in Figure 10, shown below.

To the left of point C, called the maxima, slopes are positive, and, to the right of point C, they are negative. You can determine the slope of a parabola by drawing a tangent touches at a single point line to any point on the curve. You can see below that a point such as R is then selected on the line, and a right angled triangle can be constructed which joins points R and B. We can then calculate the rise over the run between points B and R from the distance of the height and the base of the triangle.

So, we can generalize to say that the slopes of a non-linear line are not constant like a straight line and will vary in sign and in value. You will find that a knowledge of slope calculations enhances your understanding of the dynamics of graphs.

It will likely improve your marks in economics, since many test questions require you to illustrate your thinking with graphs. Summary A person from an Eastern culture once observed, "A picture is worth a thousand words. Without them, we would be forced to examine thousands, or tens of thousands, of bits of statistical information to determine economic relationships.

Many economic researchers over the years have done that work for you, and it gets expressed in nice little packages called graphs. They convey information easily, efficiently, and effectively, and can stimulate good thought and discussion.

Pearson Education Canada,p.